skip to main content


Search for: All records

Creators/Authors contains: "Shrestha, Sujan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We have investigated the surface of lithium metal using x-ray photoemission spectroscopy and optical spectroscopic ellipsometry. Even if we prepare the surface of lithium metal rigorously by chemical cleaning and mechanical polishing inside a glovebox, both spectroscopic investigations show the existence of a few tens of nanometer-thick surface layers, consisting of lithium oxides and lithium carbonates. When lithium metal is exposed to room air (∼50% moisture), in situ real-time monitoring of optical spectra indicates that the surface layer grows at a rate of approximately 24 nm/min, presumably driven by an interface-controlled process. Our results hint that surface-layer-free lithium metals are formidable to achieve by a simple cleaning/polishing method, suggesting that the initial interface between lithium metal electrodes and solid-state electrolytes in fabricated lithium metal batteries can differ from an ideal lithium/electrolyte contact. 
    more » « less
  2. Abstract

    Indium tin oxide (ITO) is one of the most widely used transparent conductors in optoelectronic device applications. We investigated the optical properties of ITO thin films at high temperatures up to 800 °C using spectroscopic ellipsometry. As temperature increases, amorphous ITO thin films undergo a phase transition at ~ 200 °C and develop polycrystalline phases with increased optical gap energies. The optical gap energies of both polycrystalline and epitaxial ITO thin films decrease with increasing temperature due to electron–phonon interactions. Depending on the background oxygen partial pressure, however, we observed that the optical gap energies exhibit reversible changes, implying that the oxidation and reduction processes occur vigorously due to the low oxidation and reduction potential energies of the ITO thin films at high temperatures. This result suggests that the electronic structure of ITO thin films strongly depends on temperature and oxygen partial pressure while they remain optically transparent, i.e., optical gap energies > 3.6 eV.

     
    more » « less
  3. null (Ed.)